Safety Instruction

Lab Caution Sign & Notice Sign

General

- A standardized lab caution sign has been established at OSU; its purpose is to warn employees and visitors entering laboratories and other hazardous areas. The notice sign is to notify employees and visitors that the space is a lab or shop but lack any safety or health hazards, such as hazards you would typically associate with a lab.
- A sign is required (sample depicted below) at each main entrance to:
 - Laboratory rooms or complexes, teaching labs, shops, and workrooms with materials not commonly found in an office environment.
- A sign is not required in:
 - o Offices, break rooms, general purpose classrooms, rest rooms, or food prep areas.
- Signs are generated by EH&S. However, personnel responsible for the hazardous area (i.e. Pls, Lab and Shop Managers)
 are responsible for providing EH&S with current and accurate information via the ONID accessed Lab Caution Sign Request.

Sign Components

Hazard Warning Icons

 A hazard warning icon is required for each piece of equipment or material stored or used at or above the amounts listed in the following Hazard Warning Icon Definitions section.

Restricted Area Icon

A restricted area icon is required for all labs with an active permit (i.e. laser permit, radiation permit, chemical/inventory
permit, biosafety level-2 permit, carcinogen permit, etc.) or for any spaces where you must be granted access beforehand to
enter.

No Food or Drink Icon

• A **no food or drink icon** is required for all labs with an active permit (i.e. laser permit, radiation permit, chemical/inventory permit, biosafety level-2 permit, carcinogen permit, etc.).

Emergency Contact Information

- This information assists EH&S in the event of an emergency and may help to save your research and/or equipment.
- Include the names of the individual(s) responsible for the space.

Contact EHS:

www.ehs.oregonstate.edu ehs@oregonstate.edu

541 • 737 • 2273

Page 1 of 4 Revised 06/2016

Hazard Warning Icon Definitions

Biohazard

 The room contains a biological agent, capable of self-replication, which presents or may present a hazard to the health or well-being of humans.

- The agent is a human blood borne pathogen or work with the agent has been assigned to be handled in a
 Biosafety Level (BSL) 2 or , BSL-3 , or BSL-4 laboratory based on the guidelines established in the CDC /
 NIH book "Biosafety in Microbiological and Biomedical Laboratories".
- The name of the agent(s) may be entered on the hazard sticker if lab is a BSL-2 lab or higher

Plant Materials

- Researchers have an IBC protocol that specifies BL1-P or BL2-P containment.
- Researchers that work with transgenic plants. Main species are Arabidopsis thaliana, tobacco maize, tomato, and grapevine. These are not necessary to the only types of plants in use.
- Researchers who work with non-exotic plant pathogens
- Researchers who have USDA / APHIS / PPQ transport or import permits.

Carcinogen

- The room contains *any amount* of High or Extreme hazard chemical carcinogens as described by the University's Chemical Carcinogen Safety Program.
 - Examples: Arsenic, Chloromethyl methyl ether, Ethylene oxide, Cadmium, 1,3-Butadiene, Beryllium, Dimethyl sulfate, Tetramethyllead, Lead chromate, Azathioprine and Erionite

Chemical Use/Chemical Storage

 Chemicals are used or stored in the room; this symbol is typically used in conjunction with one of the smaller hazard warning icons.

Corrosive Material

- The room contains 1 gallon (liquid) / 1 pound (solid) or more of corrosive materials in one or more containers
- A corrosive material is defined as a solid caustic substance or a liquid which has a 2 < pH < 12.

Cryogenics

- The room contains 4 liters or more of cryogenic liquids
- Cryogenic materials are liquefied gases that are kept in their liquid state at very low temperatures. These liquids have boiling points below -238°F (-150°C).
 - Examples Liquid nitrogen

Page 2 of 4 Revised 06/2016

Flammable Gas

- The room contains 100 cubic feet or more (at STP) of a flammable gas in one or more containers.
- A flammable gas is defined as any gas that has a flash point below 100 °F (37.8 °C) with a container pressure of 40 psig at 100 °F.
 - o **Example:** A compressed gas cylinder of Helium or Argon

Flammable Liquids

- Room contains 1 gallon or more of flammable liquids in one or more containers.
- If the control room contains 10 gallons or more of flammable liquids, then a flammable cabinet is needed
 to store the flammables.
- A flammable liquid is defined as any liquid that has a flash point below 100 degrees Fahrenheit (°F) or 37.8 degrees Centigrade (°C).
 - Example: Acetaldehyde, Isopropanol, Ethyl chloride, Acetone, Benzene, Petroleum ether, Ethyl acetate, Xylene, Ethanol, and gasoline.

Inert Gas

- The room contains 100 cubic feet or more (at STP) of an inert gas in one or more containers.
- An inert gas is a gas which does not undergo chemical reactions under a set of given conditions (generally is non-reactive with other substances).
 - o **Example:** A compressed gas cylinder of Helium or Argon

Laser Light

- The room contains class 3B or 4 lasers as defined by ANSI Standard Z136.1.
- Class 3B or 4 lasers should be noted; some Class 3B and all Class 4 laser installations emit power
 exceeding 0.5 W also require a special sign issued by EH&S. Notify the LSO when using this sign.

Magnetic Field

- The room contains any sources that produce magnetic fields of 0.5mT or greater (for both static fields and time varying fields over 30kHz)
- A magnetic field is the magnetic effect of electric currents and magnetic materials. Magnetic fields result from the flow of current through wires or electrical devices.
 - Examples of sources: Magnetic Resonance Imagining (MRI) machines, electrical wiring (such as power lines)

Nanomaterials

- The rooms contain unbound (not affixed to a surface or imbedded in a matrix) engineered nanomaterials that may pose occupational health risks by means of inhalation, ingestion or dermal exposure.
- Nanoparticles are defined as a material with at least one dimension, ranging between 1 to 100 nanometers in size.

Page 3 of 4 Revised 06/2016

Oxidizing Material

- The room contains 1 pound or more of any class of oxidizers.
- An oxidizer is defined as a substance that will cause any increase in the burning rate of a combustible material.
 - o **Examples:** Bromine trifluoride, Perchloric acid, Chromic acid, Nitric acid.
- More than 100 cubic feet (at STP) of an oxidizing compressed gas.
 - o **Examples:** Oxygen, Oxides of Nitrogen.

Radioactive Material

The room contains *any amount* of radioactive material. Use of this sign must be approved by the Radiation Safety group.

X-Ray Equipment

• The room contains a machine which **produces X-Ray radiation**. Use of this sign must be approved by the Radiation Safety group.

Recombinant DNA

If the lab contains any work involving recombinant DNA. A biohazard symbol will accompany this symbol.

Toxic Gas

- The room contains any amount of a toxic gas (inhalation 200 < LC50 < 2000 ppm) or highly toxic gas (inhalation LC50 < 200 ppm).
 - o **Examples (toxic gas):** Cyanogen, Germane, Nitric oxide, Hydrogen sulfide.
 - Examples (highly toxic gas): Arsine, Boron trifluoride, Chlorine, Hydrogen cyanide, Hydrogen selenide, Fluorine, Nitrogen dioxide.

Toxic Materials

- The room contains 1 pound or more of toxic chemicals.
- A toxic chemical is a substance with an oral LD50 of less than 50 mg/kg or skin toxicity of less than 200 mg/kg.
 - Example: Acrylamide, Chloroform, Phenol, Methylene chloride, Ethylene oxide, Sulfur dioxide, Benzene, Methanol, and Sodium Hydroxide.

Ultraviolet Light

- The room contains a machine that produces any amount of Ultraviolet light.
- UV light is an electromagnetic spectrum that falls between visible light with wavelengths of 400 nanometers and x-rays at 4 nm and below.

Page 4 of 4 Revised 06/2016