

## General

- A standardized lab caution sign has been established at OSU; its purpose is to warn employees and visitors entering laboratories and other hazardous areas. The notice sign is to notify employees and visitors that the space is a lab or shop but lack any safety or health hazards, such as hazards you would typically associate with a lab.
- A sign is required (sample depicted below) at each main entrance to:
- Laboratory rooms or complexes, teaching labs, shops, and workrooms with materials not commonly found in an office environment.
- A sign is not required in:
- Offices, break rooms, general purpose classrooms, rest rooms, or food prep areas.
- Signs are generated by EH\&S. However, personnel responsible for the hazardous area (i.e. Pls, Lab and Shop Managers) are responsible for providing EH\&S with current and accurate information via the ONID accessed Lab Caution Sign Request.


## Sign Components



## Hazard Warning Icons

- A hazard warning icon is required for each piece of equipment or material stored or used at or above the amounts listed in the following Hazard Warning Icon Definitions section.


## Restricted Area Icon

- A restricted area icon is required for all labs with an active permit (i.e. laser permit, radiation permit, chemical/inventory permit, biosafety level-2 permit, carcinogen permit, etc.) or for any spaces where you must be granted access beforehand to enter.


## No Food or Drink Icon

- A no food or drink icon is required for all labs with an active permit (i.e. laser permit, radiation permit, chemical/inventory permit, biosafety level-2 permit, carcinogen permit, etc.).


## Emergency Contact Information

- This information assists $\mathrm{EH} \& \mathrm{~S}$ in the event of an emergency and may help to save your research and/or equipment.
- Include the names of the individual(s) responsible for the space.


## Hazard Warning Icon Definitions



## Biohazard

- The room contains a biological agent, capable of self-replication, which presents or may present a hazard to the health or well-being of humans.

- The agent is a human blood borne pathogen or work with the agent has been assigned to be handled in a Biosafety Level (BSL) 2 or , BSL-3, or BSL-4 laboratory based on the guidelines established in the CDC / NIH book "Biosafety in Microbiological and Biomedical Laboratories".
- The name of the agent(s) may be entered on the hazard sticker if lab is a BSL-2 lab or higher



## Plant Materials

- Researchers have an IBC protocol that specifies BL1-P or BL2-P containment.
- Researchers that work with transgenic plants. Main species are Arabidopsis thaliana, tobacco maize, tomato, and grapevine. These are not necessary to the only types of plants in use.
BL1-P BL2-P
- Researchers who work with non-exotic plant pathogens
- Researchers who have USDA / APHIS / PPQ transport or import permits.



## Carcinogen

- The room contains any amount of High or Extreme hazard chemical carcinogens as described by the University's Chemical Carcinogen Safety Program.
- Examples: Arsenic, Chloromethyl methyl ether, Ethylene oxide, Cadmium, 1,3-Butadiene, Beryllium, Dimethyl sulfate, Tetramethyllead, Lead chromate, Azathioprine and Erionite


CHEMICAL USE

## Chemical Use/Chemical Storage

- Chemicals are used or stored in the room; this symbol is typically used in conjunction with one of the smaller hazard warning icons.



## Corrosive Material

- The room contains 1 gallon (liquid) / 1 pound (solid) or more of corrosive materials in one or more containers
- A corrosive material is defined as a solid caustic substance or a liquid which has a $2<\mathrm{pH}<12$.



## Cryogenics

- The room contains 4 liters or more of cryogenic liquids
- Cryogenic materials are liquefied gases that are kept in their liquid state at very low temperatures. These liquids have boiling points below $-238^{\circ} \mathrm{F}\left(-150^{\circ} \mathrm{C}\right)$.


## -



## Flammable Gas

- The room contains $\mathbf{1 0 0}$ cubic feet or more (at STP) of a flammable gas in one or more containers.
- A flammable gas is defined as any gas that has a flash point below $100^{\circ} \mathrm{F}\left(37.8^{\circ} \mathrm{C}\right)$ with a container pressure of 40 psig at $100^{\circ} \mathrm{F}$.
- Example: A compressed gas cylinder of Helium or Argon


## Flammable Liquids

- Room contains 1 gallon or more of flammable liquids in one or more containers.
- If the control room contains $\mathbf{1 0}$ gallons or more of flammable liquids, then a flammable cabinet is needed to store the flammables.
- A flammable liquid is defined as any liquid that has a flash point below 100 degrees Fahrenheit $\left({ }^{\circ} \mathrm{F}\right)$ or 37.8 degrees Centigrade ( ${ }^{\circ} \mathrm{C}$ ).
- Example: Acetaldehyde, Isopropanol, Ethyl chloride, Acetone, Benzene, Petroleum ether, Ethyl acetate, Xylene, Ethanol, and gasoline.


## Inert Gas

- The room contains $\mathbf{1 0 0}$ cubic feet or more (at STP) of an inert gas in one or more containers.
- An inert gas is a gas which does not undergo chemical reactions under a set of given conditions (generally is non-reactive with other substances).
- Example: A compressed gas cylinder of Helium or Argon


## Laser Light

- The room contains class 3 B or 4 lasers as defined by ANSI Standard Z136.1.
- Class 3B or 4 lasers should be noted; some Class 3B and all Class 4 laser installations emit power exceeding 0.5 W also require a special sign issued by EH\&S. Notify the LSO when using this sign.


## Magnetic Field

- The room contains any sources that produce magnetic fields of 0.5 mT or greater (for both static fields and time varying fields over 30 kHz )
- A magnetic field is the magnetic effect of electric currents and magnetic materials. Magnetic fields result from the flow of current through wires or electrical devices.
- Examples of sources: Magnetic Resonance Imagining (MRI) machines, electrical wiring (such as power lines)


## Nanomaterials

- The rooms contain unbound (not affixed to a surface or imbedded in a matrix) engineered nanomaterials that may pose occupational health risks by means of inhalation, ingestion or dermal exposure.
- Nanoparticles are defined as a material with at least one dimension, ranging between 1 to 100 nanometers in size.

Oxidizing Material

- The room contains $\mathbf{1}$ pound or more of any class of oxidizers.
- An oxidizer is defined as a substance that will cause any increase in the burning rate of a combustible material.
- Examples: Bromine trifluoride, Perchloric acid, Chromic acid, Nitric acid.
- More than $\mathbf{1 0 0}$ cubic feet (at STP) of an oxidizing compressed gas.
- Examples: Oxygen, Oxides of Nitrogen.



## Radioactive Material

- The room contains any amount of radioactive material. Use of this sign must be approved by the Radiation Safety group.


## X-Ray Equipment

- The room contains a machine which produces X-Ray radiation. Use of this sign must be approved by the Radiation Safety group.



## Recombinant DNA

- If the lab contains any work involving recombinant DNA. A biohazard symbol will accompany this symbol.

- The room contains any amount of a toxic gas (inhalation $200<\mathrm{LC} 50<2000 \mathrm{ppm}$ ) or highly toxic gas (inhalation LC50 < 200 ppm ).
- Examples (toxic gas): Cyanogen, Germane, Nitric oxide, Hydrogen sulfide.
- Examples (highly toxic gas): Arsine, Boron trifluoride, Chlorine, Hydrogen cyanide, Hydrogen selenide, Fluorine, Nitrogen dioxide.


## Toxic Materials



- The room contains 1 pound or more of toxic chemicals.
- A toxic chemical is a substance with an oral LD50 of less than $50 \mathrm{mg} / \mathrm{kg}$ or skin toxicity of less than 200 $\mathrm{mg} / \mathrm{kg}$.
- Example: Acrylamide, Chloroform, Phenol, Methylene chloride, Ethylene oxide, Sulfur dioxide, Benzene, Methanol, and Sodium Hydroxide.



## Ultraviolet Light

- The room contains a machine that produces any amount of Ultraviolet light.
- UV light is an electromagnetic spectrum that falls between visible light with wavelengths of 400 nanometers and x-rays at 4 nm and below.

