

Laboratory Risk Assessment

Laboratory Safety

A risk assessment should identify potential hazards and determine controls that can be implemented to eliminate or reduce any risks to employees, operations, and/or property. A new risk assessment should be completed and documented each time a new potentially hazardous experiment is carried out. After control measures are implemented, standard operating procedures and training should follow to ensure employees are aware of the correct steps to take and can reference such material as needed.

There are three main steps to complete this include:

Step 1: Identify General Hazards

Mark off known risks of the hazardous agents, processes and equipment. Use this list as a tool to help complete the risk assessment in step 2.

Step 2: Perform Risk Assessment

Fill out the risk assessment form. Please note, EH&S can assist in filling out parts of the risk assessment if the information is not known.

- For box 1, "Task/Activity/Chemical," input the hazardous process, chemical/substance or hazardous equipment that will be or is being used for your research. You can use the "Identify General Hazards" information (Step 1) to help fill out this box.
- For box 2, "Significant Hazard," input the hazard that relates to the hazardous process, chemical/substance, or equipment. A safety data sheet (SDS) is a useful piece of information for this section if your process includes a hazardous material (e.g. chemical or substance). For example, if you work with hydrofluoric acid (HF), the significant hazard is that HF differs from other acids because the fluoride ion readily penetrates the skin, causing destruction of deep tissue layers, including bone.
- For box 3, "Potential Consequence of Hazard," note the potential consequence of the hazard such as loss of research, property, injury, or death. A SDS may also be useful here.
- For box 4, "Initial Risk Level," use the risk matrix tool in Table 1 to determine if the risk is low, medium or high. Table 2 and 3 are also available for reference in helping you work through the Risk Matrix.
- For box 5, "Control Measures," input what control measures are in place or need to be in place in order to reduce the risk. If you are unsure of control measures for your task, please consult with EH&S. Exhibit 1 is included to assist with figuring out what type control measures are most effective to implement. An example of a control measure is utilizing a fume hood when working with chemicals, substituting a hazardous chemical with a less hazardous chemical.
- For box 6, "Final Risk Level," should indicate the final risk level, after control measures are in place. Use the Risk Matrix tool. The final risk level should be less than the initial risk level.

Step 3: Action Plan - implement control measures and create standard operating procedures (SOPs) and training

Once a control measure is identified, the researcher should take steps in implementing the control measure into their process prior to beginning the work. A brief standard operating procedure (SOP) should be completed to document what the correct procedures are for the process, equipment or substance at hand. Employees should be able to readily review the SOP. Employees should also be trained, with training documented, on the correct procedures.

Exhibit 1:

NIOSH has developed a hierarchy of controls as a means of determining how to implement feasible and effective control solutions to exposures and hazards. Control methods at the top are potentially more effective and protective than those at the bottom. Following this hierarchy normally leads to the implementation of inherently safer systems, where the risk of illness or injury has been substantially reduced.

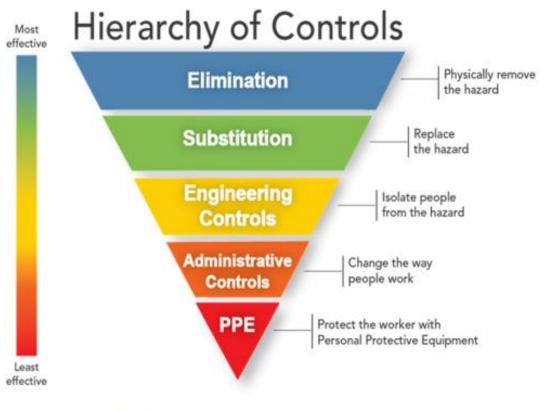


Image courtesy of NIOSH &.

Table 1:

Use this table to score your hazard or activity's risk while performing a risk assessment. Use 'L' for low, 'M' for medium, 'H' for high when describing your risk in your Risk Assessment Tool.

		Risk Matrix				
		Low	Medium	High		
Likelihood/ Probability	High	Medium	High	High		
	Med	Low/Medium	Medium	High		
	Low	Low	Low Low			
		Consequence/Severity				

Table 2:

This table defines what a low, medium and high severity risk is based on risk to people, environment, operations, and reputation. Use this table to assist with the Risk Matrix (Table 1).

	Consequence/ Impact					
	People Environment Operations					
	Low	No safety or health hazards present, first aid injury, short-term exposure to mild health effect.	Minor spill or emission / Slight effect.	Insignificant or minimal impact on operations.	Department / College level attention.	
Severity	Medium	Medical treatment injury, chronic health effects, time-loss <7 days, moderate health effect.	Controlled environmental release, minor and/or localized effects.	Could delay operations due to minor property damage.	Local area attention, OSU school level attention.	
	High	Severe health effect, time-loss > 7 days, permanent incapacitation or disability of fatality.	Some permanent ecological damage, major effect, widespread ecological damage.	Significant or long- term effects on the ability to continue operations, results in significant property damage and financial loss.	State, National and International attention.	

Table 3:

This table defines what a low, medium and high likelihood/probability is for the Risk Matrix tool (Table 1).

Likelihood / Probability	Explanation			
Low	Nearly unlikely to happen in the near future and no immediate action is needed.			
Medium	Moderately unlikely or likely to occur and actions should be taken to reduce or control the risk.			
High	More than likely to occur or high probability the risk will occur; immediate action plans required.			

Oregon State University Environmental Health and Safety

Hazardous Chemicals, Substances, Biohazards						
Chemicals/Substances	□ <u>Acutely toxic chemicals</u>	Biohazards				
Compressed Gases - Flammable	□ <u>Carcinogens</u>	□ Animal Infection Studies				
\Box Compressed Gases - Oxidizing	□ Nanomaterials	□ Large Scale Culture				
\Box Compressed Gases - Toxic	□ <u>Reproductive Toxins</u>	Risk Group – 2 Pathogens				
Compressed Gases - Inert	□ Simple Asphyxiant	Risk Group – 3 Pathogens				
Cryogenic materials	Corrosive Liquid	Plant Pathogens				
Organic peroxides	□ DEA/Controlled Substances	□ Biological Toxins				
Peroxide Formers	Specific Organ Toxicity	Human, Blood, Body Fluids				
□ <u>Self-reactive substances</u>	□ <u>Explosives</u>	Cell Culture				
□ <u>Water-reactive substances</u>	Flammable Liquids	Viruses/Recombinant Viral Vector				
<u>Pyrophorics</u>	Oxidizers/reducing agents	□ <u>Transgenic Plants or Animals</u>				
	Hazardous Processes or Equipment					
Explosion hazard	\Box Hand/power tools	Unattended Reactions				
\square Exothermic, with potential	Moving Equipment or parts	Respiratory Hazard				
for fire or excessive heat	Electrical hazards	Vacuum/Pressure Systems				
□ Acid Baths	□ Noise > 85 dBa	Refrigerators and Freezers				
\Box Hazardous reaction or products	□ Hot surfaces	Stirring and Mixing devices				
□ Generation of air contaminants	Ergonomic Hazard	□ Laboratory Microwave ovens				
(e.g. gases, aerosols, particulates)	Needles/Sharps	□ Slip, trip, falls				
\Box Heating chemicals	Drying Oven/Furnace	\Box Repetitive Motion				
□ Large volumes	Centrifuge					
□ Chemical transferring	□ Working alone/ Afterhours					
□ Foul Weather	Field Hazards	Lifting/carrying				
Temperature Extremes	□ Hygiene/water or food-borne	□ Strenuous physical activity (e.g				
□ Darkness/low light	illness	long days, high stress, etc.)				
□ Altitude	□ Falling objects	□ Driving/Operating a Vehicle				
□ Smoke/dust	□ Boating/swimming/water hazards	(e.g. Tractor, OSU or personal)				
□ Wild Animals/insects	Limited Communication	Uneven Surfaces				
□ Plants/Allergens	Remote area/limited medical services	Heights				
Shop	Shop/Laser/Radiation	Radiation				
□ Aerial Lift	□ <u>Class IIIb Laser</u>	□ X-ray Machine				
□ Air Compressor	□ <u>Class IV Laser</u>	□ Magnetic Field (e.g. NMR, MRI)				
		□ Radioactive Materials				
□ Forklift		□ <u>Unsealed Source Radionuclides</u>				
		□ Sealed Source Radionuclides				
Used/New Oil		Ultraviolet Light/Infa-red Light				

Name		Date	
Rooms Associated			
Persons at Risk:	Employees 🛛 Students 🗆 Public 🗆 Visitors 🗆 Other		

Task/Activity/Chemical ¹	Significant Hazard ²	Potential consequence of Hazard ³	Initial Risk Level ⁴	Control Measures ⁵	Final Risk Level ⁶
EXAMPLE: Using Hydrofluoric Acid	Causes severe burns with delayed tissue destruction. Rapidly absorbed through the skin. Causes tissue necrosis and bone destruction. Exposure may not be immediately visible or painful.	Long-term scarring, hospital stay, could be fatal.	Н	If a substitute is available, this would be the first potential control measure. If not, other measures such as using HF in a fume hood only, proper PPE (double gloves, chemical resistant lab coat, closed toed shoes, long pants, face shield), proper signage, proper training, do not work alone or after hours and an exposure kit with tums and calcium gluconate.	M

<u> </u>			
	I	1	1

